Atomic Hong－Ou－Mandel effect

R．Lopes，A．Imanaliev，A．Aspect，M．Cheneau，DB，C．I． Westbrook

Laboratoire Charles Fabry，Institut d＇Optique，CNRS，Univ Paris－Sud

IFRAF，Paris，November，05th 2015

INSTIUT DES SCIENCES ET TECHNOLOGIES
INSTITUT d＇OPTIQUE
graduateschool

Outline

(1) Quantum Optics with light
(2) \rightarrow HOM effect with photons
(3) Quantum Optics with atoms
(4) \rightarrow HOM effect with metastable helium atoms
(5) Conclusion and perspectives

Quantum Optics with light

Quantum optics

- Effects involving at least two particles
- Hong-Ou-Mandel experiment (1987): milestone two-particle interference experiment
- HOM effect: a "last" step before entanglement criteria (e.g. Bell's inequality)
- HOM setup: building block for quantum information processing

2 photons +1 beam-splitter: 4 possibilities

- 2 distinguishable photons

$\stackrel{\alpha}{\stackrel{\tau}{i}}$	$\stackrel{o}{\stackrel{\alpha}{\text { Rr }}} \underset{\sim}{c}$
$\begin{aligned} & \stackrel{\text { tR }}{0} \\ & \Leftrightarrow D^{2} \end{aligned}$	$\hat{D}_{\mathrm{RT}}^{\mathrm{RT}}$

- 2 indistinguishable photons

$$
P_{c d}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

2 photons +1 beam-splitter: 4 possibilities

- 2 indistinguishable photons
- 2 distinguishable photons

$$
P_{c d}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

2 photons +1 beam-splitter: 4 possibilities

- 2 indistinguishable photons
- 2 distinguishable photons

$$
P_{c d}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

$\underset{\rightarrow D e}{ }$	

$$
\begin{gathered}
\text { - } P_{c d}=\left|A_{T T}+e^{i \pi} A_{R R}\right|^{2}=0!! \\
\left|\Psi_{\text {in }}\right\rangle=|11\rangle,\left|\Psi_{\text {out }}\right\rangle=|20\rangle+|02\rangle
\end{gathered}
$$

FIG. 1. Outline of the experimental setup.
Need beam-splitter, pin-hole, spectral filters, photon-counter, coincidence counts, path delay

Two-photon interference

The 'HOM dip' for indistinguisable photons works for 2 independent photons but experiment easier with pairs of photon

Hong Ou Mandel: striking 2-particle effect for input state of one particle per input beam

Quantum Optics with ultra-cold atoms

Pro-Cons

- Another platform for quantum information
- More degrees of freedom (internal state, boson/fermion)
- Controllable, tunable and strong non-linearity
- Purity of the state
- . Manipulation (mirrors, beam-splitter, pin-hole, vacuum...)

Atomic Hong-Ou-Mandel effect

What do we need for the atomic analogue?

- An atom: metastable helium
- The ability to detect single particles: micro-channel plates
- An source of pairs: lattice-assisted collision
- Mirror, beam-splitter, pin-hole, interference filters: 2-photon Bragg diffraction + 3D capability of the detector

Let's go!

Quantum atom optics with metastable helium (He*)

Specificities of He^{*}

$2^{3} \mathrm{~S}_{1}$: metastable helium (life-time of $\sim 2 \mathrm{~h}$): He *

- Laser cooling at $1.08 \mu \mathrm{~m}$
- 2001: Bose-Einstein Condensate of $\sim 10^{5}$ atoms
- High internal energy \Downarrow
- Electronic detection by micro-channel plates (MCP)

The detector

- Cloud released from the trap \rightarrow atoms fall 50 cm to detector (300 ms fall time)
- MCP: low-noise electronic amplifier
\Rightarrow sensitive to single atom (quantum efficiency $\sim 25 \%$)
- 3D detector: x, y and t (resolution $140 \mathrm{~ns}, 250 \mu \mathrm{~m}$)
\Rightarrow Measurement of \vec{v}
$\left(x_{0}+v_{0} t \approx v_{0} t\right)$
- Measurement of distribution $\rho(\overrightarrow{\mathbf{v}})$
- Measurement of 2-body correlation $G^{(2)}\left(\vec{v}, \overrightarrow{v^{\prime}}\right)$ $g^{(2)}=\frac{G^{(2)}\left(\vec{v}, \vec{v}^{\prime}\right)}{\rho(\overrightarrow{\mathbf{v}}) \rho\left(\mathbf{v}^{\prime}\right)} \neq 1 \Leftrightarrow$ correlation

Lattice-assisted collisions

Dynamical instability of a BEC in a moving optical lattice


```
elastic collision between
two atoms of the condensate:
k
\(k_{0}+k_{0} \rightarrow k_{1}+k_{2}\)
```

Hilligsøe \& MøImer, PRA 71, 041602 (2005)
Campbell et al., PRL 96, 020406 (2006)

Momentum distribution

M. Bonneau et al, Phys. Rev. A 87, 061603(R) (2013)

Tunability

Control over the output modes
Control over the population

solid line: single-particle prediction dashed line: mean field

Pairs of atoms

Atom pairs

- Pairs of atoms \checkmark
- Detection $\rightarrow G^{(2)}$
- +sub-Poissonian variance \& violation of Cauchy-Schwarz inequality
- Beam-splitter (BS)
- 2 photon Bragg diffraction
- 2 laser beams $(\Delta \mathbf{k}, \Delta \omega)$
- Resonant for $\mathrm{p}_{a}=\mathrm{p}_{b}+\hbar \Delta \mathrm{k}$ and $\frac{p_{a}^{2}}{2 m}=\frac{p_{b}^{2}}{2 m}+\hbar \Delta \omega$.
- Transmission coef. \leftrightarrow duration

Pairs of atoms

Atom pairs

- Pairs of atoms
- Detection $\rightarrow G^{(2)} \checkmark$
- +sub-Poissonian variance \& violation of Cauchy-Schwarz inequality
- 2 photon Bragg diffraction
- 2 laser beams $(\Delta \mathbf{k}, \Delta \omega)$
- Resonant for $p_{a}=p_{b}+\hbar \Delta k$
and $\frac{p_{a}^{2}}{2 m}=\frac{p_{b}^{2}}{2 m}+\hbar \Delta \omega$.
- Transmission coef. \leftrightarrow
duration

Atom pairs

- Pairs of atoms
- Detection $\rightarrow G^{(2)} \checkmark$
- +sub-Poissonian variance \& violation of Cauchy-Schwarz inequality
- Beam-splitter (BS) \checkmark
- 2 photon Bragg diffraction
- 2 laser beams ($\Delta \mathbf{k}, \Delta \omega$)
- Resonant for $\mathbf{p}_{a}=\mathbf{p}_{b}+\hbar \Delta \mathbf{k}$ and $\frac{p_{a}^{2}}{2 m}=\frac{p_{b}^{2}}{2 m}+\hbar \Delta \omega$.
- Transmission coef. \leftrightarrow duration

- Ready to go for HOM!

The experimental sequence

- t_{0} : Lattice switched on
- t_{1} : Trap switched off
- t_{2} : Bragg in mirror mode
- t_{3} : Bragg in BS mode ($t_{3}-t_{0} \sim 1 \mathrm{~ms}$) exact timing of t_{3} control the overlap
- $t \sim 300 \mathrm{~ms}$: Detection by MCP

Mirror and beam-splitter by Bragg diffraction

The result: Cross-correlation $G_{c d}$ in function of BS application time

$\tau=t_{3}-t_{2}$: scan of the overlap
Visibility : $V=\frac{G_{\text {max }}^{(2)}-G_{\text {min }}^{(2)}}{G_{\text {max }}^{(2)}}$

- DIP !!, with visibility of $V_{\text {exp }}=0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ?
- not either since visibility >0.5 (red area)
- \Rightarrow 2-atom interference
atomic Hong Ou Mandel effect!
\rightarrow Lopes et al, Nature 520, 66 (2015)

The result: Cross-correlation $G_{c d}$ in function of BS application time

$\tau=t_{3}-t_{2}$: scan of the overlap
Visibility : $V=\frac{G_{\text {max }}^{(2)}-G_{\text {min }}^{(2)}}{G_{\text {max }}^{(2)}}$

- DIP !!, with visibility of $V_{\text {exp }}=0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ? (red area)
- $\Rightarrow 2$-atom interference
\rightarrow Lopes et al, Nature 520, 66 (2015)

The result: Cross-correlation $G_{c d}$ in function of BS application time

$\tau=t_{3}-t_{2}$: scan of the overlap Visibility: $V=\frac{G_{m x}^{(2)}-G_{\text {min }}^{(2)}}{G_{\text {max }}^{(2)}}$

- DIP !!, with visibility of $V_{\text {exp }}=0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ?
- not either since visibility >0.5 (red area)
- \Rightarrow 2-atom interference

atomic Hong Ou Mandel effect!

\rightarrow Lopes et al, Nature 520, 66 (2015)

Non-zero dip

- atoms could be not totally indistinguishable
- \rightarrow unlikely

Indistinguishable particles $\rightarrow V_{\max }=1-\frac{G_{a a}^{(2)}+G_{b b}^{(2)}}{G_{a a}^{(2)}+G_{b b}^{(2)}+2 G_{a b}^{(2)}}$
Measurement of $V_{\max }$ with same sequence except mirror and
beam-splitter non applied : $V_{\max }=0.6 \pm 0.1$
$V_{\exp } \approx V_{\text {max }}:$ atoms indistinguishable up to our signal to noise

- OR input state is not exactly one atom per beam
- \rightarrow yes, mean atom number $=0.5$ is not low enough

Non-zero dip

- atoms could be not totally indistinguishable
- \rightarrow unlikely

Indistinguishable particles $\rightarrow V_{\max }=1-\frac{G_{a b}^{(2)}+G_{b b}^{(2)}}{G_{a a}^{(2)}+G_{b b}^{(2)}+2 G_{a b}^{(2)}}$
Measurement of $V_{\text {max }}$ with same sequence except mirror and beam-splitter non applied : $V_{\max }=0.6 \pm 0.1$
$V_{\text {exp }} \approx V_{\text {max }}$: atoms indistinguishable up to our signal to noise - OR input state is not exactly one atom per beam \rightarrow yes, mean atom number $=0.5$ is not low enough

Non-zero dip

- \rightarrow unlikely

Indistinguishable particles $\rightarrow V_{\max }=1-\frac{G_{a b}^{(2)}+G_{b b}^{(2)}}{G_{a a}^{(2)}+G_{b b}^{(2)}+2 G_{a b}^{(2)}}$
Measurement of $V_{\text {max }}$ with same sequence except mirror and beam-splitter non applied : $V_{\text {max }}=0.6 \pm 0.1$
$V_{\text {exp }} \approx V_{\text {max }}$: atoms indistinguishable up to our signal to noise

- OR input state is not exactly one atom per beam
- \rightarrow yes, mean atom number $=0.5$ is not low enough

Non-zero dip

- \rightarrow unlikely

Indistinguishable particles $\rightarrow V_{\max }=1-\frac{G_{a b}^{(2)}+G_{b b}^{(2)}}{G_{a a}^{(2)}+G_{b b}^{(2)}+2 G_{a b}^{(2)}}$
Measurement of $V_{\text {max }}$ with same sequence except mirror and beam-splitter non applied : $V_{\text {max }}=0.6 \pm 0.1$
$V_{\text {exp }} \approx V_{\text {max }}$: atoms indistinguishable up to our signal to noise

- OR input state is not exactly one atom per beam
- \rightarrow yes, mean atom number $=0.5$ is not low enough

Conclusion and perspectives

Observation of the Hong-Ou-Mandel effect

- (-)
Benchmarks our ability to make 2-particle interference
- Benchmarks our source (modes with similar wave-functions)
- - ~ 10 hours integration time for each point in HOM plot... see also Kaufman et al, Science 345, 306 (2014)

Perspectives: EPR paradox and Bell's inequality

- State of our source $|\Psi\rangle=\int d k_{1} d k_{2} A\left(k_{1}, k_{2}\right)\left|k_{1}, k_{2}\right\rangle$
- The phase of $A\left(k_{1}, k_{2}\right)$ matters for EPR and Bell!
- EPR: A. J. Ferris, Phys. Rev. A 79, 043634 (2009) \rightarrow Homodyning the 2 atoms with condensate, measurement of atom number variance
- Bell: R. J. Lewis-Swan, K. V. Kheruntsyan, arXiv: 1411.019 (2014). \rightarrow Need 4 modes, mixing 2 by 2 on beam-splitter, measurement of 2-body corr.

