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Anderson model (1958)
Tight-binding model + disorder

M
H=)V, 1
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n#m
Disorder Hopping
Randomly distributed over [-W/2, W/2] between site n and site m

P. W. Anderson, Absence of diffusion in a certain random lattices, PRL 109 1492-1505 (1958)
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Scaling theory (1979)

Study the change of the generalized dimensionless conductance g
with the typical size given by L

d=1, B <0: localization
d=2, B <0: localization
/ d = 3 : metal-insulator transition

d>2

FIG. 1. Plot of B(g) vs Ing for d>2, d=2, d<2. g(L)
is the normalized ‘““local conductance,” The approxima-
tion g =s In(g/g,) is shown for g> 2 as the solid-circled
line; this unphysical behavior necessary for a conduc-
tance jump ind =2 is shown dashed.

E. Abrahams et al, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
PRL 42 673 (1979)
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Scaling theory (1979)

Study the change of the generalized dimensionless conductance g
with the typical size given by L

/..

The dynamics is always localized \
* The localization length scales exponentially with the (inverse)
disorder strength:

g oC le(f[kl/2)

| : mean-free path in the disordered medium

\ k : wavevector /

2 signatures of 2D Anderson localization

E. Abrahams et al, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
PRL 42 673 (1979)



Experiments on 2D disordered systems

Transverse 2D Anderson localization in photonic lattices (Technion)

T. Schwartz et al,,

Transport and Anderson localization in disordered 2D
photonic lattices,

Nature 446, 52--55 (2007).

2D Diffusive Expansion of Ultracold Atoms in an Speckle Potential
(Institut d'Optique)
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M. Robert-de-Saint-Vincent et al,

Anisotropic 2D Diffusive Expansion of Ultracold
2 Atoms in a Disordered Potential,

. Phys. Rev. Lett. 104, 220602 (2012).
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Experiments on 2D disordered systems

Transverse 2D Anderson localization in photonic lattices (Technion)
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photonic lattices,

Nature 446, 52--55 (2007).

2D Diffusive Expansion of Ultracold Atoms in an Speckle Potential
(Institut d'Optique)
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- M. Robert-de-Saint-Vincent et al,

’ Anisotropic 2D Diffusive Expansion of Ultracold
Atoms in a Disordered Potential,

o Phys. Rev. Lett. 104, 220602 (2012).

4 T % @ 50 ms with disorder
B 200 ms with disorder
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This work : a quantitative study of 2D Anderson localization

Position x [um]
&

Integrated density [a.u.]

Observation of 2D AL with atomic matter waves
Experimental evidence of the exponential dependance of the localization length with the disorder strength
Arxiv:1504.04987
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Periodic Kicked Rotor

Cs Magneto-optical trap



Periodic Kicked Rotor

Pulsed optical lattice

2

H:%JrKcost(S(t—n)

Adjustable parameters

E reduced Planck constant (kick frequency)

K stochasticity parameter (laser beam intensity)

0 to 150 kicks



Dynamical localization

Classic
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Dynamical and Anderson localizations

PHYSICAL REVIEW
LETTERS

VOLUME 49 23 AUGUST 1982 NUMBER 8

Chaos, Quantum Recurrences, and Anderson Localization

Shmuel Fishman, D. R. Grempel, and R. E. Prange
Department of Physics and Centev fov Theovetical Physics, University of Mayvyland, College Pavk, Mavyland 20742

{(Received 6 April 1982)

A periodically kicked guantum rotator is related to the Anderson problem of conduction
in a one~dimensional disordered lattice, Classically the second model is always chaotic,
while the first is chaotic for some values of the parameters, With use of the Anderson-
model result that all states are localized, it is concluded that the local quasienergy spec~
trum of the rotator problem is discrete and that its wave function is almost periodic in
time, This allows one to understand on physical grounds some numerical results recent-
1y obtained in the context of the rotator problem,

Equivalence between 1D Anderson model and Kicked Rotor
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Equivalence between 1D Anderson model and Kicked Rotor

See also (3D case): G. Casati, I. Guarneri and D.L. Shepelyansky, Anderson Transition in a One-
Dimensional System with Three Incommensurate Frequencies, Phys. Rev. Lett. 62, 345 (1989)



Dynamical and Anderson localizations

Tight-binding model + disorder

—

H=Zw

Disorder

Pseudorandom distribution
(Lorentzian distribution)
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Dynamical and Anderson localizations
Tight-binding model + disorder

—
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H=Zw

n#m
Disorder Hopping
Pseudorandom distribution between site n and site m
(Lorentzian distribution) (short-range model)
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Dynamical localization in the periodic kicked rotor

Anderson localization in 1D disordered systems



Quasiperiodic Kicked Rotor

i 5
‘l ' Hop = % + K cosx(1 + ccos(wat)) > d(t —n)

T

Adjustable parameters

E? reduced Planck constant (kick frequency)

K stochasticity parameter (laser beam intensity)

Pulsed optical lattice

T, K, wy incommensurate triplet

Mapping to the 2D Anderson model

Disorder Hopping
Pseudorandom distribution between site n and site m
(Lorentzian distribution) (short-range model )
Anisotropic for small €

1 ny K
Vo s = Lo §(w — 7%? + wano) t = tan {ﬁ cos x1(1 + € cosxs)



Experimental setup

Kick & Amplitude Control
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Experimental setup

Kick & Amplitude Control
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¥ 1D Anderson
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2D Anderson localization

Experimental signature : exponential shape of the
momentum distribution at 200 kicks
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2D Anderson localization

Experimental signature : freezing dynamics
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2D Anderson localization

Self-consistent theory of localization 1D Dise =

D. Vollhardt and P. Wolfle, Phys. Rev. Lett. 48, 699-702 (1982)

4k



2D Anderson localization

Self-consistent theory of localization 2D Ploc = —— €Xp 7%2

K2 acK?
4k




2D Anderson localization

Self-consistent theory of localization

K? acK?
Ploc = E €Xp %2




2D Anderson localization

Self-consistent theory of localization

K? acK?
Ploc = E €Xp RQ

1
4115 (1)

/

Population of the zero
velocity class

Eiin



2D Anderson localization

localized momentum distributions after 1000 kicks as a
function of the anisotropy parameter

Self-consistent theory of localization

K? ac K2
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2D Anderson localization

Kinetic energy at 1000 kicks with respect to the purely 1D
case vs. the scaling parameter

K? ae K?
Self-consistent theory of localization 2D Ploc = E exp RQ

275 measurements
for different values of

K,k e




2D Anderson localization

Kinetic energy at 1000 kicks with respect to the purely 1D
case vs. the scaling parameter

Self-consistent theory of localization

2D

4k

K? (QEKQ)
Ploc = —— €XP

EQ

« At the largest K/kbar values,

the localization time is not
much shorter than 1000 kicks

The prediction is valid only in
the small € limit and deviations
are expected, and indeed
observed, at large global
parameter

« The K-dependence of the

diffusion constant is not
perfectly quadratic (oscillatory
terms) — kicked rotor model
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Weak localization

* Precursor of Anderson (strong) localization

* The diffusion coefficient tends to be lowered in presence of disorder

—» Enhanced amplitude probability that the wavepacket comes back to its origin

—» One-constructive-interference effect in time-reversal invariant systems

P(r,r) =Y |Al +) AA

I#]
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Weak localization

* Precursor of Anderson (strong) localization

* The diffusion coefficient tends to be lowered in presence of disorder

—» Enhanced amplitude probability that the wavepacket comes back to its origin

—» One-constructive-interference effect in time-reversal invariant systems

P(r,r) =Y |Al +) AA

I#]
r=r Pquant(r"r)ZZZ‘qu"2

Enhanced Return to the Origin

Coherent Backscattering of Ultracold Atoms,
See also:

o F. Jendrzejewski, K. Miiller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, and V. Josse
(transmission exp.)

Phys. Rev. Lett. 109, 195302 (2012)



Weak localization in the kicked rotor

X Extreme sensitivity to initial width of the momentum distribution

0.07

numerical simulation
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Weak localization in the kicked rotor

X Extreme sensitivity to initial width of the momentum distribution
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X The peak is always here ! v Control of the number of scattering events



Weak localization in the kicked rotor

X Extreme sensitivity to initial width of the momentum distribution
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Perform a differential measurement
(i.e. breaking sometimes this interference effect)



Weak localization in the kicked rotor

Perform a differential measurement
(i.e. breaking sometimes this interference effect)

Periodically-shifted kicked rotor

2
H:%—I-KCOS Zdt—Qn)—l-Kcos T+ a Z5t—2n+1)

Even kick number:  A¢? = +A¢”  Same additional phase
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C. Tian, A. Kamenev, and A. Larkin, Phys. Rev. B 72, 045108 (2005)
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Weak localization in the kicked rotor

Perform a differential measurement
(i.e. breaking sometimes this interference effect)

Periodically-shifted kicked rotor
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Odd kick number:  A¢? = —Ag" Opposite signs
B.1) - ‘direct’ path B.2) - ‘reverse’path
APV, At = 124 APV, AG = —24

—_ N w )
—_ N w £y

o

0\f1 2 3 |4 5 61 kick number
7 ' '

. ‘)l .
kick number
2 3 |4 5 |6 -

I)l
. > -

N w N -

v

D —
Y

A b b




Weak localization in the kicked rotor

Periodically-shifted kicked rotor

2
H = %—chos(:c)Zé(t—Qn)—|—Kcos(:z:+a)Z§(t—2n—|—1)
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Weak localization in the kicked rotor

A useful tool to probe decoherence of our system
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Conclusion

Cs experiment

e A quantitative study of 2D Anderson localization with the quasiperiodic
kicked rotor:

— First experimental evidence of 2D Anderson localization with
atomic matter waves
- experimental evidence that d=2 is the lower critical dimension

* Observation of the weak localization with the periodic kicked rotor



Conclusion

Cs experiment

A quantitative study of 2D Anderson localization with the quasiperiodic
kicked rotor:

— First experimental evidence of 2D Anderson localization with

atomic matter waves
- experimental evidence that d=2 is the lower critical dimension

Observation of the weak localization with the periodic kicked rotor

A quasiperiodic kicked rotor with 4 incommensurate frequencies
< 4D Anderson model (Transition)

A quasiperiodic kicked rotor with 3 incommensurate frequencies in others
symmetry classes

Anderson model with interactions

¥K experiment (under construction)
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