



# Transverse self-organization in a cold atomic cloud

Institut Non Linéaire de Nice (France)

> G. Labeyrie A. Camara R. Kaiser



University of Strathclyde (UK)

| T. Ackemann | GL. Oppo  |
|-------------|-----------|
| P. Gomes    | E. Tesio  |
| I. Kresic   | W. Firth  |
|             | G. Robb   |
|             | A. Arnold |





# **Patterns and self-organization**





#### optical pattern formation in nonlinear media



PRL 72, 2379 (1994).

#### optomechanical self-organization





PRL 112, 023902 (2014).

Nature 464, 1301 (2010).

# Large magneto-optical trap





- N ~  $10^{11}$  atoms  $\rightarrow$  size ~ 1cm
- OD  $\sim 200$

itut non linéaire de **N**ice

•  $T\sim 200~\mu K$ 

self-focusing :EPJD 22, 473 (2003) ; EPJD 41, 337 (2007).spatial soliton :Opt. Lett. 36, 2158 (2011).



**2-level nonlinearity** 









## **Spin nonlinearity**







Appl. Phys. B 72, 21 (2001).



- low intensity
- fast (depends on s)
- polarization and B-dependent







• slow

tut non linéaire de **N**ice

- depends on T
- $\delta >> \Gamma \rightarrow$  no dissipation

# **Single-mirror feedback experiment**

itut non linéaire de **N**ice

J. Mod. Opt. 37, 151 (1990).



tunable pattern length scale (Talbot) :  $\Lambda \propto (\lambda d)^{1/2}$ 



## **Optomechanical instability**







**Spatial bunching ?** 







#### **2-level instability**



 $\delta > 0$  $\Delta t_{pump} < 1 \ \mu s$ 

20

15

J/8

5

0

(a)

s = 0.1

s = 1





tut non linéaire de **N**ice





Theory





• 2-level and/or optomechanical (thin medium, no dissipation) PRL 112, 043901 (2014).

• spin: OBE for  $2 \rightarrow 3$ 







**Conclusion / Outlook** 

MOT



• transverse instabilities in cold atoms: 3 mechanisms

 $\rightarrow$  other instabilities

cf. Dan Gauthier:

Opt. Express **19**, 22535 (2011). PRA **86**, 013823 (2012).

 $\rightarrow$  localized structures / light bullets

• optomechanical self-organization in a BEC ?



2 *continuous* symmetries (translation and rotation)  $\rightarrow$  *multimode* 

Nat. Phys. 5, 845 (2009).





Cold atoms : fundamental concepts and applications, Paris, 5-6/11/2015

PBS









http://lanaturedeguillaume.e-monsite.com



### **Pattern wavelength tunability**





Cold atoms : fundamental concepts and applications, Paris, 5-6/11/2015



### **Spin patterns : linear polarization**







## **Spin patterns : circular polarization**



#### no polarization instability



Cold atoms : fundamental concepts and applications, Paris, 5-6/11/2015